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i1

ABSTRACT

Laminar viscous flov and heat transfer in helical coils are
studied numerically. The effect of coil pitch on fluid flow
and heat transfer 1s described. It 1is assumed that coil
radius 1is much greater than that of ¢the tube. The thermal
boundary condition considered is constant wvall temperature.
Prandtl number range considered is from 0.05 to 40, and Dean
number range is from 60 to 328. Coll curvature ratio studied
is 100. The numerical method used to solve for flow and
thermal fields is the alternating direction implicit method
(ADI}. Good stability in the numerical solution 1s noticead
wvhen a convergence parameter 1is introduced 1into the ADI
method. It is concluded that coil pitch angles up to 30° have
negligible effect on convective heat transfer. Hovever, pitch
angles up to 45° are found to decrease the average Nusselt
number by about 20% in the case of intermediate and high
Prandtl number. The reduction is about 10% in the case of low

Prandtl number,
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CHAPTER 1

INTRODUCTION

The study of flowv and heat transfer 1in curved tubes 1is
a research problem of great practical interest. Applications
of such flows are found 1n many important flowv and heat
transfer applications. For example thermal storage tanks,
rocket engines, jacketed vessels, reacting vessels and
heating, ventilating and air conditioning systems.

One important feature of the flov in curved tubes 1is
the secondary flow. Understanding tﬁe physical phenomenon of
the secondary flov in curved tubes is very important since it
is the mechanism that makes such flovs unigue .and
interesting. Centrifugal force, proportional to the square of
the axial velocity, tends to push fluid in the central region
of the tube cross section towards the outer bend of the
curved tube. This induces a pressure gradient directed

tovards the inner bend of the tube, with a maximum pressure

at the outer bend. As a result of the variation of the axial -

velocity throughout the tube cross-section, the centrifugal
force assumes its greatest magnitude in the central region

and is roughly in balance wvith the induced pressure gradient

(Prusa and Yao, 1982}.

The pressure near the wall decreases circumferentially
going from the outer side to the inner side of the tube
cross-section. The fluid close to the wall vill move from

higher pressure regions to lowver pressure regions. Hence,
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secondary motion will be induced in both halves of the tube
cross-section.

The axial velocity profile along the horizontal
diameter, 1.e. diameter of symmetry, 1is distorted from the
familiar parabolic profile encountered in flows in horizontal
straight tubes. Although the maximum axial velocity, still
lies on the horizontal diameter, it is shifted to the outer
side of the tube cross section. This 1is due to the
centrifugal force acting on fluid particles,

One eonsequence of secondary flovw inside curved tubes
1s increasing the critical Reynolds number. The secondary
flov circulates the high kinetic energy fluid from the
central core of the tube towards the wall region vhere the
fluid flows slover. The mixing which results delays the flow
transition to turbulent flow.

Fully developed laminar curved tube flovws are
characterized by the ratio of centrifugal forces to viscous
forces. This ratio is knovn as the Dean nunmber, De=Re/RVz
vhere Re is the Reynolds number and R is the curvature
ratio R'/a . where R is the coil radius, and a is the tube
radius.

Heat transfer rate in curved tubes 1is proved to be
significantly greater than in straight tubes under the same
boundary conditions and for the same mass flov rate. This is
due to the mixing effect caused by secondary motion.

The most important thermal boundary conditions that
have been considered for heat transfer in curved tubes are
axially uniform wall heat flux with uniform wall temperature
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at each axial location, and constant vall temperature.

The obJective of this study is to investigate the fully
developed laminar flov and heat transfer in helically coiled
tubes. The coil radius is taken to be very high in comparison
vith tube radius, 1i.e. Rl>) a. The thermal boundary condition
considered is constant wvall temperature. The effect of
different inclination angles of the . tube axis, l.e. different
coll pitch angles, on both flov and heat transfer 1is
presented. Results are given for the range of Dean number
from 60.0 to 328,0, curvature ratio of 100 , and Prandtl
number o0£f0.05, i.O, 5.0, 25.0,and 40.0 . For fluid flowv ,
results are given in the form of secondary flow contours, and
axial velocity distribution along the horizontal diameter of
the tube cross-section. For heat transfer, results are
presented in the form of temperature contours, local Nusselt

number, and average Nusselt number.
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CHAPTER 2
LITERATURE REVIEW

Fully developed flow and heat transfer in curved tubes
vas studied extensively by many researchers both
theoretically and experimentally for different thermal
boundary conditions. However, the effect of coil pitch ha§
not been studied adegquately.

The first theoretical study of fully developed steady
flov in a curved tube vith circular cross section wvas made
by Dean ( 1927 ). He peointed out that the dynamic similarity
of such flov depends on a non - dimensional parameter k =
(2a/B')(awm/v) . where wm is the mean axial velocity , v 1is
the kinematic viscosity and a 1s the radius of the pipe wvhich
is bent in a circle with a radius R . This parameter can be
considered as the ratio of the centrifugal force induced by
circular motion of the fluid to the viscous force. Dean's
analysis was restricted to small values of k.

White ( 1929 ) presents extensive experimental data for

helical flowv. His data have been correlated by a

dimensionless quantity, known nov as Deans number, which 1is-

equal to the Reynolds number multiplied by the square root of
the ratio between the tube radius to the coil radius.
Hawves ( 1932 ) presents experimental data of axial

velocity in curved tubes and shows their distortion from

parabolic profiles characteristic of horizontal straight-

tubes, due to the induced centrifugal forces by circular
motion. He shows that the temperature profiles are different
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from those for straight tubes and that the local heat
transfer coefficlent at the outer wall is greater than that
at the inner vall. He is the first to present the fully
developed temperature profiles in curyed tubes
experimentally.

Adler { 1934 ) experimentally verifies the hydrodynamic
results obtained by Hawes for curvature ratios R fa 50, 100,
and 200.

Truesdell and Adler ( 1970 ) treat laminar flow 1in
helically coiled tubes numerically. Fully developed axial and
secondary velocities are calculated for both <circular and
elliptical cross sections. Only coils vith small pitch angles
are considered.

Murakami et. al. {( 1971 ) report that the effect of
non-zero pitch could be approximately accounted for by using

medified radius of curvature in the Dean number calculation

as follovs

172
a

e = ne [ = )

vhere
' z
=R (1 + tan"a )
wvhere o is the modified radius of curvature, and o 1is the
pitch angle.
Austin ( 1971 ) numerically solves for flows inside
circular coils vith Dean number ranging from 1 to 1000 and

vith curvature ratio from 5 to 100. The flow equations solved
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vere put in terms of axial velocity, stream function, and
vorticity. Although considerable computation time vas

needed, his results agree well-  with accepted experimental

data.

Dravid, Smith, Merril and Brian ( 1971 ) present
experimental, analytical and numerical results for laminar
flov in helically coiled tubes with small pitch with an
emphasis on a fundamental understanding of developing
temperature field. The differential equation of heat
transport is solved in twvo steps : First, an analytical
approximation applicable within about one tube radius from
the start of the heat transfer zone, and second, the complete

numerical solution covering both the entire thermal entrance
region and the fully developed region. Numerical results are
compared with experimental data in the range 1in vhich they
overlap. Three wvall boundary conditions are considered, 1)
constant wall temperature. 2) constant wall heat flux. and
3) vall heat flux varies with angular direction ¢ s0 that the
temperature is independent of ¢ at any axial location.

Kalb and Seader ( 1971 ) treat steady viscous flowv in
curved circular tubes for fully developed velocity and
temperature fields under the thermal boundary condition of
axially uniform wvall heat flux with peripherally uniform wall
temperature. The thermal energy equation vas solved
numerically by the use of a point successive over relaxation

method. Results cover a vide range of Dean number, Prandtl
number and curvature ratio. The Dean number ranges from 1 to
1200, Prandtl number from 0.005 to 1600 and curvature ratio
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from 10 to 100. Peripherally averaged Nusselt number is

correlated by the following equations

Hu = 3.31 De® '*° pp ©-0108 20 ¢ De ¢ 1200

0.005 ¢ Pr (0.05

wvith a maximum deviation of 4 % .

Ru =0.913 pe® *7® pr°-? 80 < De ¢ 200
0.7 ¢ Pr ¢ 5.0
vith a maximum deviation of 5 %.

Kalb and Seader ( 1974 ) consider flov and heat
transfer 1in curved circular tubes for a uniform vall
temperature boundary condition. They give numerical solutions
for a vide range of Prandtl numbers for Dean numbers as high
as 1200. For values as small as 10, the curvature ratio 1is
found to have a negligible effect on the peripherally
averaged Nusselt number. The average Nusselt numbers for the
important Prandtl number range of 0.7 to 5 are correlated by

NU = 0.836 De® > pr°-? De > 80

Janssen and Hoogendoorn { 1978 } present an
experimental and numerical study on convective heat transfer
in coiled tubes. They consider heat transfer in the thermal
entry region as wvell as in fully developed thermal and

hydrodynamic regions. Two thermal -boundary conditions vere
studied; uniform peripherally averaged heat flux, and

constant wall temperature. The experiments were carried out
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for curvature ratios, R , from 100 to 10, Prandtl numbers
from 10 to 500 and Reynolds number from 20 to 4000.

Rabadi, Chow, and Simon ( 1979 ) solve the flov and
heat transfer equations numerically, using a modified
procedure that covers a wide range of Prandtl numbers and
Dean numbers up to 1305. The thermal boundary condition
analyzed is axially uniform wall heat flux and pefipherally
uniform vall temperature. It is found that the secondary flow
circulations become more complex as the Dean number
increases. A convergence parameter 1is introduced into the
alternating direction implicit { ADI ) method, vhich results
in a substantially reduced computation time. A method of
finding the optimum convergence parameter 1s described. Their
results are compared for the same range of parameters vith
those of Austin ( 1971 ).

Zapryanov, Christov and Toshev ( 1979 ) present a
numerical study of fully developed steady flov of viscous
incompressible fluid in a curved circular tube. The numerical
solution applies the methed of fractional steps to
hydrodynamic and thermal problems. Good solutions from low to
reasonably high Dean and Prandtl numbers are obtained.
Results are compared with experimental data and some
theoretical solutions.

Chilukuri and Humphrey ( 1980 ) study the influence of
buoyant effects on developping heat transfer in strong curved

duct flows. They assume steady state, incompressible laminar
flov of constant physical property fluid.
Prusa and Yao ( 1982 ) introduce a physical model that
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accounts for the combined ¢ffgcts of DOt Dbuoyancy and

centrifugal force for fully developed laminar flov in heated
curved tubes. A thermal boundary condition so that a constant
axial temperature gradilent is maintained is used. Results for
Prandtl number of unity are presented for a moderate range of
Dean number and product of the Reynolds and Raleigh numbers.
Detailed predictions of flow resistance, average heat
transfer rate and secondary flow streamlines are given. A
flov-regime map is provided to indicate the three basic
regions wvhere ( 1 } centrifugal force dominates ( 2 } both
buoyancy and centrifugal forces are important and ( 3 )
buoyancy force dominates,

Kalb and Seader ( 1982 ) present experimental study of
entrance region heat transfer to gases flowing in a uniform
vall temperature helical coil. Runs vere made in the range of
Reynolds number where the flov is initially turbulent upon
entering the coil, but laminar dowvnstream vhere secondary
flov develops. The results indicate a rapid transition to
laminar flow and are 1in satisfactory agreement with a
numerical solution for fully developed heat transfer.

Humphrey, Iacovides and Launder ( 1985 ) give numerical
solutions for a semi-truncated Navier-Stokes equations for
the case of developing 1laminar flov 1n circular-sectioned
bends over a range of Dean numbers. The ratios of bend radius
to pipe radius are 7:1 and 20:1. Stream wise velocity

profiles at Dean numbers of 183 and 565 are 1in excellent
agreement with Laser-Doppler measurements by Agraval, Talbot

and Gong ( 1978 ). 39907¢C
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Futagami and Aoyama ( 1988 } present both theoretical
and experimental study on the effect of secondary flov on
heat transfer from a uniformly heated helically coiled tube
to fully developed laminar flow. Both the centrifugal and
buoyancy forces are taken 1into account in the numerical
analyses. The solutions cover a wide range of Prandtl
numbers. The velocity and temperature profiles, the friction
factor and heat transfer coefficient are obtained. The
effects of the secondary flov on heat transfer are divided
into three types; those in the centrifugal, the buoyant and
the composite range. They give an approximate expression for
peripherally averaged Nusselt number in the composite range.
Their results are compared vith experimental results using
vater. The coil used in the experiments have a curvature
ratio of 101:1 and the angle of inclination of the coll axis
is 77

Sumida, Suodou, and Hada ( 1989 ) clarify
experimentally the secondary flov pattern by visulization
method for fully developed pulsating flow through curved pipe
with curvature ratio of 7.6.

Rabadi (1989 ) uses the Alternating Direction TImplicit
method ( ADI )} to solve the energy equation for viscous flov
in coils. The thermal boundary condition considered is

constant wall temperature. A convergence parameter is
introduced into the ADI method resulting in a substantially

reduced computation time and high flexibility of solution.
Temperature contours for Dean number of 594 over a range of
Prandtl number from 0.05 to 5 are presented, and also for
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De=1390 and Pr =5.0. Results for both 1local and average
Nusselt number are given for the above mentioned values of
both Dean number and Prandtl number. Average Nusselt number
vas correlated by the following formula for Prandtl number of
0.7, and 5.0

Nu =0.507 De  °*

1 0. 116

Pr 100

IA
=
[t
A
—
w
Qo
o

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



12

CHAPTER 3

FORMULATION OF THE PROBLEM

31 AsSSUMPTIONS

In this study the following assumptions are made :

1} Incompressible, Newtonian, and constant properties fluid.
2) Steady laminar flow.

3) The flov and temperature fields are fully developed.

4) Negligible free convection and viscous dissipation.

5) Negligible axial conduction relative to radial conduction.
6} The tube radius 1s very small in comparison with the coil

radius, that is afR ({1

3.2 GOVERNING EQUATIONS FOR HELICAL COILS

The dimensional equations that govern steady laminar
flow and heat transfer in helical coils ( figure 3-1 ) are

given as follows ( Futagami and Aoyama, 1987 )
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Continuity equation 1@

au 1 av u _
2rtT e Tt (3.1)

Momentum equations :

Radial-direction motion

uou v su _ v' _ cos‘a cosg v
ar r a¢ r R
_ 1 ap w2 av
= -—|o— 31 + v Au Tz ;_2“(?@] (3-2)

Tangential-direction motion

wov , v ov , uv cos’o sing v°

ar r d¢ r R
_ .1 &P _ v 2 éu (3.3)
- rz“?zcw]

Axial-direction motion

u oV v dv _ _ €cos & ap
a7 * T b - >R 55t ¥ AV (3.4)
vhere v, u’ and v are the dimensional velocity

components in the tangential, radial and axial directions

respectively.
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Energy equation

u aT7 v 4T v 8T _
ar +—r—. o0 + R 20 s AT (3.5)
here T, p, and = are the dimensional temperature, ~ pressure,

and thermal diffusivity respectively.

The operator A is given as follovs:

2
a + .lz 3...2

) 1
= ettt T ar r 9

The above system of equations can be put in a simpler
form by eliminating the un-known pressure gradients in both r
and ¢ directions from equations (3-2) and (3-3). This can be
achieved by differentiating equation (3-2) vith respect to ¢
and equation (3-3) with respect to r: and then combinipg the
resulting two equations so that the un-knowvn pressure terms
are canceled. This results in a nev equation named secondary
flov equation, since it represents secondary flow. But still
the resulted equation has a complex form and need to be
simplified more. This is achieved by introducing both the

» ¥

radial and tangential velocity components { u and v } 1in

terms of the dimensional stream function w as follows;:
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.1
I (3.6)

v =‘-§f.--- (3-7)

Hhen both u' and v' are used in their nev forms as
given by equations { 3-6 ) and ( 3-7 ), the equation resulted
earlier from the differentiating and combining process
mentioned above ( refer ed to as secondary flov eqguation ) is
transformed into a fourth order equation in terms of w. And
so0 the final set of equations governing the flowv field 1is
composed of two simultaneous partial differential equations:
the first is second order ( in terms of v ) represents axial
flov, and the second is fourth order ( in terms of ¥ )
represents secondary flowv.

The fourth order secondary flowv equation can be further
simplified using the following definition of axial vorticity
E.. The resulted nev secondary flov equation is second order
in terms of Z, where ¥ is given as follovs
E'= Aw' (3.8)

The dimensional form of the secondary flowv equation is given

as follows:

u ar + ¥ 9% .
ar r ¢

2 v cos’a v 1 av
—-'R——— [Sin¢ ?" TCOS¢'6—¢- ] "‘UAE (3.9)
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Non-dimensionalizing the governing equations:

The flowv field equations can be made dimensionless

using the follovwing transformations

avw
W = 'u:.& 'v=i r:i'nz L
15 v v a a
2 2
w:w_ E:af P:a_P_.
v ! v ' P ve

The resulting dimensionless equations that govern flowv

and temperature fields are given below

Dimensionless axial wvelocity equation

u  av
ar

v &y _ _ cOos5 o ap
t = b8 + A (3.;0)

The operator A is as follows

Using both u and v in their form as functions of g

(v = (-1/r) (8y/8¢) , v = ap/dr ) Equation ( 3-10 )

becones

cOv ,pov _ v 1 v _ cos a P (3.11)
ar a¢ ar- r g R a3

vhere
- 1 oy Sol 1 ow

B r aér ’ ¢ r r ag¢
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Dimensionless secondary flow equation

2z 2

c X% +B6€_652__126<‘.’2=D (3.12)

ér ao or r a¢ v
vhere

z

_ 2 w cos'«o v 1 av
bEr—w— [COW 2T Ts““?w]
§ = Ay
Dimensionless energy equation :

To make- the energy equation dimensionless, all

previously mentioned dimensionless quantities are to be used
in addition to the followving dimensionless temperature for

the thermal boundary condition of constant wall temperature

Pr oT /é&@ T - T
m v

vhere Pr 1s the Prandtl number { Pr = u c /k ), Tvis the wvall
P

temperature, Tmis the mixing-cup temperature, and T 1s the
R L=

temperature at the center-line of the tube.

The resulting dimensionless energy equation is given as
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T .
u 1Fc- AT (3.13)

he operator A 1s as defined in page 20

3.3 BOUNDARY CONDITIONS

The boundary conditions of the governing equations are

shovn 1n figure ( 3-2 }. A discussion of those boundary

conditions is given below

3.3.1 AXIAL VELOCITY BOUNDARY CONDITIONS

1)

2)

3)

At the wall : The no-slip condition applies, hence
v = 0.

r=1
Along the horizontal diameter ; Derivative boundary

conditions are present, due to symmetry between the
upper and lower halves of the tube cross-section;
{dw/8) = 0 .

==1/2

At the center point of the tube-cross sectlion; A
derivative boundary condition 1s present. This 1is
because of symmetry along the vertical diameter at the

center point, (av/ér) = 0
r=0
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3.3.2 STREAM FUNCTION BOUNDARY CONDITIONS

1) At the wvall; The wvall represents a streamline along
which  has a constant wvalue. For convenience
this constant value 1is taken to be zero since
there 1s no significance for the absolute

value of w. Only derivatives of y are meaningful.

Z) Along the horizontal diameter; What is said in item
l is applicable here, since the horizontal diameter
represents a streamline. Because of its continuous

nature a value of zero 1s assigned to y .

3) At the center point of the tube-cross section:
Because of the continuous nature of the stream
function, it must have the value of zero at the

center point.

3.3.3 VORTICITY BOUNDARY CONDITIONS

Equation ( 3-8 )} will be used to illustrate the vorticity
boundary conditions
1) At the vall; Because of the no-slip condition at the wall

Equation 3-8 gives

2) Along the horizontal diameter; Equation 3-8 gives ¥ = 0

3) At the center point of the tube cross section; Since the

axial vorticity is a continuous function it must have a
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zero value at the center point.

3.3.4 TEMPERATURE BOUNDARY CONDITIONS

1) At the wvall; From the definition of T, it is obvious that

T 1s zero at the wall.

2} Along the horizontal diameter; Because of symmetry, the

derivative boundary condition of (3T/ap) 0 holds.

=2

3) At the center point of the tube-cross section; At the

center point symmetry along the vertical diameter rquires

(8T/or) = 0

r=0
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3.4 DeaN NUMBER AND NUSSELT NUMBER CALCULATION

The Dean number 1s evaluated from the following relation:

De = Re ( a/R )7?

The Local Nusselt number is derived from the folloving
relation:

v

q, = - k (9T/ar) _=h (T - T )

vhere q, is the heat flux at the wall, and Tm is the nmean
temperature. After making the above relation dimensionless,
using the previously defined transformations, local Nusselt

number can be shown to be given as follows:

-2 { @aT/Or)r=1
T

m

Hu =

Tm 1s defined by:

2 1
T = 2 ;T r dr d
m W T v irdrde
m
o o

Average nusselt number is given by

27
- 1
Hu ’T_R—-T—rn J (6T/6r)r=1R d¢

o

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



2T =g
¢
W =0
oo
vy =0
t =0

Figure 3,2

5
3

ar o
v
=

|

oy e Q)
-

Boundary

|
|

conditions

T oo
e
AL
3¢
¥ =0
3 =0

23

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



24

CHAPTER 4
NUMERICAL SOLUTION

41 INTRODUCTION

Before going into the details of the numerical solution, the

folloving remarks are to be mentioned

1) The axial velocity, secondary flow, and energy
equations are all non-linear and although mathematically
being <classified elliptic, they can be considered,
approximately, parabolic. This 1is because in such fluid flov
problems, influences travel only from upstream to downstream,
i.e. the conditions at a point are affected 1largely by the
upstream conditions, and very little by dovnstream ones. On
the other hand equation 3-8, that gives the definition of

vorticity 1s linear and elliptic.

2} The governing flov equations are linked with each
other, and are to be solved simultaneously, where as can be
seen, the secondary flov equation has axial velocity terms,
and so can not be solved unless the axial velocity field 1is

known; either from initial guess or from the solution of

axial flov equation. The stream function p 1is obtained from

Equation 3-8 after weach iteration cycle. This equation
depends on & values, which are obtained either from inittal

guess, or from the solution of the secondary flow equation,

Eq. 3-12 . The axial velocity equation is 1linked wvith both
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secondary flow equation and the vorticity eguation through

the non-linear coefficients which are functions of y.

3) After getting the flov field solution, the energy
equation can be solved, vhere the enerqgy equation is 1linked
vith velocity field through the presence of convectional

terms and source tern.

4.2 NUMERICAL METHODS USED

Alternating Direction Implicit ( ADI } methods were
introduced in companion papers by Peacemen and Rachford
(1955) and Douglas ( 1955 }. ADI method proposed by Peacemen
and Rachford make use of splitting time step ( 1in case of
un-steady problems) or iteration step ( 1in case of steady
state problems) into two halves for two-dimensional problenms,
three halves for three-dimensional problems, and so on. It
vas used successfully (Rabadi, 1980) by wilkes { 1963 ),
Pearson ( 1965,1967 ), Brily ({ 1968 ) and Rabadl et. al. (
1979 ). ADI methods are currently the most popular approach
to viscous flov problems . Because of these reasons, the ADI
method proposed by Peacemen and Rachford ( 1955 ) 1s used in
this study to solve axial flow, secondary flow and energy
equations.

For elliptic equations, the successive over-relaxation
(SOR) method was used effectively in previcus works {Rabadi,
1980), and hence it is used in this study to obtain nev field

values of y vhen solving equation 3-8 at the end of each
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iteration cycle.

The SOR method can be summarized using the followving

equation; where it describes hov new values of y at the end

of the iteration step can be evaluated

¥ g E o+ pt( 1-p )
vhere; (3 is an over relaxation parameter; 1 < 3 ¢ 2
E is the value of y obtained from the solution

vorticity equation ( Egq. 3-8 ).

43 FINITE DIFFERENCE EQUATIONS

The finite-difference form of the governing egquations,
according to ADI method, is given belowv, where central

differences are used

The finite difference equation of the first half of the

L}

iteration step is given by

L v41-2 v i4+1.-2 L L+l /2
. + . + R =
1 i-1,k 3 .k 5 Tje1,k

0- x'y' xty' - xt oy (4.1)

z k-1 "6 T,k 4 joket

The finite difference equation of the second half of

the iteration step is given by :
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i E+1 + xt it+1+ i+l =
2 ja.k-1 s i,k 4 j,k+t
i i+1-2 i L1 2 1 1+1.72
Q- X1 -X_ Y -X ¥ .2
i -1,k 3 T,k s T j+1,k (4.2)

vhere Y 1s a dummy variable for w, ¥, and T. Q is the source
term. The'expressions for § and the coefficients assoclated

vith the variables w, £, and T are given below

Coefficients of v

X = CJ2Ar - 1/(Ar)?
X_= 2/(ar)?

X_= -C/2Ar - 1/(Ar)?
X_= -B/2A¢ -1/(r Ap)>
X = B/24a¢ -1/(r a¢)2
X = 2/(r a¢)°

Q0 = -1/R COSa 8p/ae

Coefficients of ¥

X = C/f2ar - 1/(ar)?
X = 2/(Ar)°

X = -C/2Ar - 1/7{Ar)?
X_= -B/2A¢ -17(r ag)°
X = B/2A¢ -1/(r a¢)?

X = 2/(r Ap)?
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Coefficients of T

X = A_/24r + 1/(ar)?

1

X,= -2/ (ArS

X_= -A_/24r + 1/(arg

X = ~B_/28¢ + 1/(r 23)

- z
X4- BT/2A¢ +1/(r Ag)
X = -2/(r A¢f
0= -vw17/7T

c
vhere
AT= Pr v/r
B=1/r + Pr u
T

The finite difference form of the vorticity equation

suitable for the SOR method is given below

Ziwj-x,k+ Zzwj,k-t+ Zaka * Z4¥3*_1+ zs vﬁ+ak=
rar ¢ (4.3)
ik '
vhere
Z,= r® | 172r + 1747 ]
“

Z_= Ar/{A$)?

-

2 = -2 [ r%/ar +ars(ae)? ]

2 =r -1/72r + 1/Ar ]
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4.4 NUMERICAL PROCEDURE

In this study, vhere steady and fully developed velocity and
temperature fields are assumed, the governing equations are
tvo~-dimensional , i.e. flow variables may vary Just. in two
directions; the radial r and the tangential ¢, and so ,
according to the ADI method, iteration step is split into
twvo halves.

The numerical procedure folloved to accomplish this

vork is described as follovs:

l} Due to symmetry, the domain of interest is, just, the
upper half of the tube cross-section. This domain 1is to be
prepared for finite difference operations, and so it 1is
divided into 20 equally spaced intervals in both r and ¢
directions, resulting in a 21 21 grid, ( see figure 4-1 ).

2) An initial guess is given for all dependent variables
under consideration ( i.e. v, ¥, ¥ and T ) at all points in
the domain of interest. Reasonable 1initial guess decreases
computation time. For example, parabolic axial velocity
profile for a given axial pressure gradient leads to
significant reduction in computation time vhen solving flow
field equations.

3) The parabolic governing eguations { Equations 3-11,
3-12, and 3-13 ) are put in their finite difference form

according to the ADI method. Either derivatives vith respect
to r or ¢ can be put implicitly in the first half of the
iteration step. In this study, derivatives with respect to r
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are put implicitly im the first half of iteration step. The

rest of the terms in the governing equations are put

explicitly ( depending on their initial values). The result of

this process is a linear system of equations that form a
tri-diagonal matrix, which is relatively easy to solve, and
which is also one of the advantages of the ADI method.

4) The sclution obtained from step 3 is considered
initial guess for the solution of the second half of the
iteration . In this second half, derivatives vith respect to
¢ are put implicitly and other terms of the governing
equations are put explicitly, resulting in a tri-diagonal
matrix , and can be solved easily.

5) The procedure mentioned in both (3) and (4) above
vas applied first to the axial velocity equation. The
resulted newv axial velocity field wvas introduced into the
secondary flowv equation, and then the procedure of ( 3 } and
( 4 ) wvas applied successively,

6) The resulted nev field of & from ( 4 ) 1is used 1in
solving Equation 3-8 using SOR method to calculate ¥,

7) w, £, and y vhich result after a complete iteration
are considered as initial quesses for the next iteration.

8) Iterations are repeated as described above until a

converged solution is obtalned. A solution 1s considered

converged when :

max

vhere Y is a dummy variable for v, £, v, and T, and i 1s the
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number of iteration.

9} When a cohverged flow solution is obtained, it
introduced into the energy equation, which is solved in

same way described above.

31

is

the
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45 MAJOR DIFFICULTIES IN THE NUMERICAL SOLUTION

451 DIFFICULTIES CAUSED BY DERIVATIVE BOUNDARY CONDITION

The discussion of the difficulties in the numerical solution
caused by derivative boundary conditions 1s "~ divided 1inteo
three parts

1) The following three approximations of the derivative

boundary value of ¢ at the wall, z=azw/ar? vere tested

£,,° l/2(ar)?(4 v, ) +o (an)® (4.4)
- 2 - 2
ka- l/72(ar) (B wz,k L } + o (Ar) (4.5)
£ = 172(ar)?q1z -3 P 2 » o (ar)®  (4.6)
Lk Y2,k Y3 ,x 9 ¥ x y

The first approximation, which was given in the
pioneering vork of Thom and has been used extensively since

then , leads to more stable solutions

2) The derivative boundary condition of both v and T at
the center point : When solving the equation of the first
half of iteration ( Eq. 4-1 ) for both wv and T, it 1is
necessary to knov both v and n values at the center point 1in
advance as boundary conditions. These boundary values are

obtained from initial guess, or from the previous iteration
half step. A good technique folloved which gives modified
values for both w and T at the center point 1is adopted. This
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technique simply solves v and T equations along the vertical
diameter. Then the new values obtained of both v and T at the
center point can be considered as good boundary values for
the first half iteration ( i.e., for Equation 4-1 which 1s
implicit in r-direction ). For the second half iteration,
the values of w and T at the Center point are those updated
from the solution of the first half step 1iteration.

3) The derivative boundary condition of both v and T
along the horizontal diameter : At the 1left half of the

horizontal diameter, i.e., ¢ = -90°

forvard differences are
used for the derivative boundary conditions av/d¢ = 0 and
dT/ad¢ = 0 which are given as follows

9Y/a¢ = 1/(2A¢) ( -3 YL1+ 4 YLz- YLSJ
vhere Y is a dummy variable for w and T.

On the other hand, along the right side of the
horizontal diameter, i.e. ¢ = 905 backvard differences are
used for the derivative boundary conditions : 8w/a8¢ = 0 and,
dT/d¢ = 0 vhich are given as follows

8Y/ap = 1/(24A) ( 3 Yj,21- 4 Yj,zo + Yj,19)

452 DIFFICULTIES OF CONVERGENCE OF SOLUTION

The finite difference equations ( 4-1 ) and ( 4-2 ), with
their boundary conditions, each form a set of equations 1in

the folloving general form
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L4

aL Y °= ﬁi (4.7)

vhere ot is a tridiagonal matrix and 1s a function of the
stream function, coordinates, and grid spacings. aL wvas found
to be diagonally not dominant. This caused the solution of
Eq. 4-7 to diverge. To overcome this difficulty, the
following technique has been adopted : A convergence
parameter, A , is introduced 1inteo Egq. (4-7), so that «
becomes diagonally dominant. This is done as follovs

(8

(ot + AT )Y =45 +2r17¥t (4.8)

A 1s taken to be a multiple of the middle element in the main
dliagonal of the tri-diagonal matrix ol I 1is the  unity
matrix.

The range of XA used in this study for the solution of w
equation was from about 5 to about 10. For secondary flov
equation A ranges from about 5 to about 20. For the energy
equation the range of X is from 5 t0 20 for values of Pr from

.05 to 5.0. Higher values of Pr required A values up to 60

for Pr of 40
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CHAPTER O

RESULTS AND DISCUSSIONS

5.1 FLUDD FLOW RESULTS

The effect of coill curvature on fluid flow is
manifested through the induced centrifugal forces acting on
fluid particles. A pressure gradient in the direction toward
the center of curvature is induced to balance these forces,
and consequently form a pressure fileld vwith maximum value at
the outer most point of the tube cross-section (at ¢ = 90°,
see figure 3-1). The pressure near the vall decreases
circumferentially going from the outer side to the inner side
of the tube cross-section, due to the fact that centrifugal
forces acting on fluid particles close to the wall decrease
as moving closer to the coil center. This will cause pressure
field near the wall to behave as if there is a vacuum side 1in

the range of ¢ from 0°to -90°, and a pressure side from 90°

to 0°

The fluid close to the vall will move
counterclockvise from higher pressure regions to lover
pressure regions, hence, secondary motion vill be induced 1in
both halves of the tube cross-section. The mirror image of
secondary motiocn in both halves of the tube cross-section

holds when buoyancy effects are neglected.

As can be seen from figures (5-1) and (5-2), the stream
lines show hov tangential velocity varies across the tube
cross-section. According to the definitions of the tangential
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velocity component, the places 1in vhich streamlines are very
close to each other 1indicate high tangential velocities.

Figures 5-3 and 5-4 shov the axial velocity profile
along the horizontal diameter. The distortion from the
parabolic profile of flovs in straight horizontal tubes 1is
clear. This 1is due to centrifugal forces acting on fluid
particles. The greater the pressure gradient, the greater the
shift of the point of maximum axial velocity towvards the

outer side of the tube.

5.2 HEAT TRANSFER RESULTS

Results of the thermal side of this study are given in terms
of the followings : ;) Dimensionless temperature contours, 2)
Local Nusselt number profiles as a function of angular
position along the circumference for different Prandtl
numbers and different inclination angles of the tube axis «
(i.e different coll pitches), and 3) In terms of peripherally
averaged Nusselt number as function of coil pitch angle « for

different Prandtl nunmbers.

5.2.1 DisCcuUsSION OF TEMPERATURE CONTOURS

The discussion 1s divided into three parts, the first
cencerns low Prandtl number., The second and third concern
high and intermediate Prandtl number respectively.

1) Low Prandtl number ( Pr = 0.05 }):

Figures 5-5, 5-6, show the dimensionless temperature
contours for Prandtl number of 0.05 and for tvo flovw
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situations ( lov and intermediate Dean numbers). They all

have very similar shapes, but differ in the values of the
difference in magnitude between each two adjacent lines, i.e.
AT .These figures show that the point of maximum
dimensionless temperature, although shifted towards the outer
side of the tube cross-section, 1lie along the horizontal
diameter. The maximum dimensionless temperature corresponds
to the hotest or coldest temperature, depending on vwhether
the process considered is cooling or heating. For lowv Prandtl
number fluids, e.g. liquid metals, conduction mode of heat
transfer 1s more important than convection. This will cause a
smooth variation in temperature across the tube
cross-section. This result can be seen by noting the
relatively uniformly spaced temperature contours, compared
vith the situation of high Prandtl number temperature
contours shown in figures 5-7 to 5-10

2) High Prandtl number (5.0 < Pr < 40)

Figures 5-7 to 5-10 show that the point of maximum
dimensionless temperature 1is shifted off the horizontal
diameter, ( causing double maxima to appear vhen consldering
both the upper and lower halves of the tube cross-section ).
For lov De the angular position of the maximum dimensionless
temperature is near ¢ = 0°. The gréater the Dean number the
greater the shift towards the inner surface of the tube. For
high Prandtl number fluids, the convective heat transfer mode

is dominant. This can be realized by noting the steep
variations in temperature in figures 5-7 to 5-10, especially
in the vicinity of the wall in the range of ¢ > 0°.
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Large portion of the high Pr fluid entering the central

region from the inner side of the tube cross-section has been
heated ( or cooled ) to temperatures close to that of the

vall, as a result of secondary motion. This will cause

central region temperature to be not far removed from that of
the wall.

Temperature contours shown in figures 5-9 and 5-10,
correspond to Pr of 25 and 40 respectively. 1In addition to
vhat is mentioned above, these figures shovw that some peaks
appear near the wall at ¢ = 90°.

3) Intermediate Prandtl number ( Pr = 1.0 )

For intermediate values of Pr, temperature contours
have characteristics of low Pr temperature contours. The
point of maximum dimensionless temperature is still on the
horizontal diameter. But because of more convection
contributing to heat transfer, it 1s shifted more to the
outer bend of the tube than that in the case of low Pr. These

situations are shown in figures 5-11 and 5-12

22 Locat NusseLt NUMBER Nu

For intermediate and high Prandtl numbers the variation of Hu
along the circumference is significant. On the other hand for
low Prandtl number the variation of Nu is not so0 1important.
These situations are shown in figures 5-13, to 5-20.

The minimum value of locdl Nu for all Pr and all De was
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found to be alvays at the inner most angular position, 1.e.
at ¢ = - 90°. In fact, Nu at ¢ = - 90° vas found to be less
than that of horizontal straight tubes, i.e. less than 3.66.
This can be explained by recalling that the fluid in the
vicinity of the inner wvall 1is at temperatures relatively
close to the wall temperature, due to the secondary flow
wvhich has passed near the wall and has been heated ( or

cooled ) close to the wall temperature.

5.2.3 PERIPHERALLY AVERAGED NUSSELT NUMBER

Average Nusselt number results are given as functions of «.
These results are shown in figures 5-21, to 5-24. As shovn in
these figures the variation of Nu with pitch angle o 1is
negligible up to values of « of about 30°, For values of «
greater than about 30° the decline in Hu profile 1s <clear.
The variation of De with « 1s also presented in figures 5-21
to 5-23, vhere up to a of about 30° the reduction in De 1is
small. Further 1increase 1in « results in a considerable
reduction in De.

Average Nusselt number, Nu ,as a function of De for
different Prandtl number values is shown in figures 5-25 and
5-26

Over the studied range of De, 1.e. approximately 60 (
De < 400 and for Pr of both 1.0 and 5.0, the average Nusselt

number 1s correlated by the following correlation

Nu = 0.856 Dpe°' °°%¢ p, O-1143 (S-1)
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Table 5.1 shows : 1) Ku values that are used to make
the correlation given 1in Eq. 5-1, 2) Nu values that

resulted from Eq. 5-1, and 3) the deviation

betveen Nu obtained both numerically and from Eq. 5-1.

Table 5.1 : Numerical and correlation average Nusselt number

results
Nu
De Pr Numerical correlation Deviation %
5.1
67.0 1 7.00 7.29 4.10
73.1 1 7.66 7.62 4.50
308.3 = 15.18 15.86 4.50
328.0 = 17.19 16.37 4.80
67.0 5 8.61 8.76 1.70
73.0 5 9.25 9.16 1.02
308.3 = 17.75 19.06 7.40
328.0 = 19.79 19.67 0.60

5.3 EFFECT OF COIL PITCH ON FLUID FLOW AND HEAT TRANSFER IN

HELICAL COLLS

For the same curvature ratio and the same d&8p/as |,
increasing the pitch angle « will result in the damping of
secondary motion. Although @&P/88 1s the same, the pressure
gradient along the tube axis, i.e. dP/3L is decreased. 8P/3 L
is related to &8P/39 by the folloving relation

dP/oL = cosa OP/fax

vhere
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3P/ax is the axial pressure gradient vhen a is gero.

An example that shows the effect of « on De 1is given
below : For R= 100, and 8P/39 = 400000, De was decreased from
73.144 to 67.0, i.e. by about 8 ¥ , vhen a increased from
0°to 30°. Increasing « up to 45° results in decreasing De to

59.0, i.e. by about 15 %

Decreasing the intensity of secondary motion by
increasing «a results in decreasing heat transfer by
convection, which is dominant vhen Pr is high . For 1lowv
values of Pr ( Pr =0.05 ), the effect of varying « is not
important, since convection mode of heat transfer is not
important compared with conduction mode. This can be noticed
quantitatively by noting that for the same R and &P/88 the
average Nusselt number decreased by about 10 % for high and
intermediate Pr, and by about 5 % for 1low Pr vhen o 1is
increased from 0° to 30°. Increasing « to 45° decreases Nu by
about 20 % in the case of intermediate and high Pr, and by
about 10 %¥ for low Pr. From these results it becomes clear
that neglecting the effect of a on fluid flov and heat
transfer in helically coiled tubes is justified only for o <«
30°, Figures 5?21 up to 5-23 show both Hu and De as functions
of o for Pr = 5.0, 8Pfo8 = 3.0E6, and R = 100. . As «can be

seen, up to « of about 30° both Nu and De are almost uniform.
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9.4 COMPARISON WITH OTHER WORK

Some of the obtained flowv results are compared vith the
results obtained from the approximate relation of Murakami
et. al. ( 1971 ), vhich gives De taking 1nto account the
effect of o by using modified radius of curvature of the
coil. The results of this comparison is seen in table 5-2. As
can be seen the deviation betwveen Murakami's results and
those of this study increase vith increasing a . The relation

of Murakami et. al. is given below

a 1,2
De = Re [ —_ ]
o

vhere

g =R (1 ¢+ tan®a )

Thermal results are also compared with other works.
Peripherally averaged Nusselt number results obtained from
the correlation given 1in Eg. 65-1 are compared with the
results obtained from the folloving correlations made by both
Rabadi, 1989, and Kalb and Seader, 1974.

Rabadi's correlation

0. 614 Q. 115

Nu = 0.507 De Pr 100 ¢ De ¢ 1300
0.7 ¢ Pr ¢ 5.0

Kalb and Seader‘s correlation :

Ta = 0.836 pe® ® pro? De > 80

6.7 ¢ Pr ¢ 5.0
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This comparison is shown in figures 5-24 and 5-25 . As
can be seen from these figures the agreement betveen the
results of this study and those from the correlations above

is satisfactory

Table 5.2 : Comparison between Dean number calculated by
Murakami's relation and that obtained in this

study for R = 100

De
o gp/ae Present study Murakami's Deviation %
Relation

15 4.0E5 71.14 70.7
30 = 67.0 63.4

2.0
15 3.0E6 323.1 317.0
30 = 308.3 284.0 8.0
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

This study vas undertaken to 1lnvestigate the effect of coll
pitch on the thermal performance of helical «coils. It s
found that the effect of increasing pitch angle « on average
Nusselt number, Nu , Xeeping both, R, 8P/ as constants,
depends on fluid's Prandtl number. Low, intermediate and high

Pr conclusions are as follows

1) Lov Pr; increasing a from 0° to 30° decreased Nu by about
5 % . While increasing a to 45° decreased Nu by about 10%

2} Intermediate and high Pr; increasing « from 0° to 30°
decreased Nu by about 10 % . While 1increasing a to

45° decreased Nu by about 20 %

Average Nusselt number results for Prandtl numbers of

1.0 and 5.0 are correlated by the following correlation

NG = 0.856 De® "°"* p

O. 1143
T

As can be seen Nu is a function of Pr and De which 1s a

function of pitch angle «.
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6.2 RECOMMENDATIONS

It 1s recommended to study the effect of buoyancy on flov and

heat transfer in helical coils.
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Table {A.1): Results obtained for different pitch angels

APPENDIX A

pressure gradlents for R§= 100, Pr = 0.05%

o aP ) 38 De Nu

) 4.0ES 73.14 4.40
15 = 71.70 4.30
30 = 67.00 4.17
45 = 59.00 4.00
0 2ES0 169.0 4.80
15 = 166.8 4.72
30 = 158.3 4.64
0 0E6 328.0 5.60
15 = 323.1 5.53
30 = 308.3 5.30
45 = 281.9 4.84

and

76
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Table (A.2): Results obtained for different pitch angels and

pressure gradients for Ro= 100, Pr = l.O

o 3P/ 38 De Nu

0 4.0ES 73.14 7.66
15 = 71.70 7.50
30 = 67.00 7.00
45 = 59.00 6.20
0 1.2E50 169.0 11.6
15 = 166.8 11.3
30 = - 158.3 10.4
0 3.0E6 328.0 17.2
15 = 323.1 16.7
30 = 308.3 15.2
45 = _ 281.9 12.2
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Table (A.3): Results obtained for different pitch angels

pressure gradients for Ro= 100, Pr = 5.0

o 3P/ &0 De Nu

0 4.0ES5 73.14 9.27
15 = 71.70 9.08
30 = 67.00 8.61
45 = 59.00 7.85
0 2E50 169.0 13.6
15 = 166.8 13.3
30 = 158.3 12.2
0 .0E6 328.0 19.8
15 = 323.1 19.5
30 = 308.3 17.75
45 = 281.9 15.0

and
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Table (A.4):

Results obtained for different pltch angels

pressure gradients for RO=

100,

Pr = 25.

0

o

30

45

ap/as

.0E6

De

328.0
308.3

281.8

25.6
22.5

18.9

and

59

Table {(A.5): Results obtained for different pitch angels and

pressure gradients for R°= 100, Pr = 40.0
a ap /a9 De Nu
0 3.0E6 328.0 _26'3
30 = 308.3 23.2
45 = 281.8 19.73
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FLOW CALCULATION PROGRAM

c NF : Maximum number allowed forr major cycle iterations.

C PRSI ! Maximum ralative srror allowed for the convergence on the
c stream function.

C FXSI : Maximmum relative erreor allowed on the vorticity.

c FW @ Maximum relative error allowed on axial velocity.

c FZ ¢ Over relaxation factor used for the stream function eqgation
C salution.

c XZB : Under relaxation factor used for the calculation of the

C vorticity at the wall

cC £ : Reynolds numbet.

C DE @ Dean number,

c TCY1l * Number of major cycle iterations.

c CFP : Fressure gradient.

c Ro @ curvature ratio.

c W, FS5I, and XI @ Axial velocity stream function and vortesity.
cc

IMPFLICIT REAL #8{(A~-H.0-Z)

OIMENSION XSI(21,21),WI(21,212,X811(21,21),,W(21,21),

e RO(Z0D) . YRRR (20, 20) , W2{(21,21),

* FCC(20,20) ,FS(20), T(21} . X8SI2(21.21),

* Z1 (20,203, Z2(20,20) ,Z3(20), 24 (20,20) , Z25(20, 20},

* YIT (20,200, YIR (20,20) . XESIEB(21),

# DW(20,20) ., TW{7,7):BW(7:7).RI(21),

L TXSI(7,7):BXSI(7:7),X3T(20,20),

H FESI(21,.21) PSS (20, 20) ., FC(Z1), YHH (20, 20) . R(21),

* ROJ(21) RI(Z20,20)Y . H(21,21),Z2(41+41),

* X1{20.20) 4 X2(20,20), X4 (20, 20) , XS(20,20),

* VR (21) 2 XRE(Z21) s VTA(21) - XT4(21) - BPSI (6, 46) +» XGR(20,20) ,

s TFSI(S6:6)VR1{21) ., VRZ(Z21),VRI(Z21) . VTL(21) . VT2(21),

" UT3(21) . XT1(21) . XT2(21) . XT3(21) - XR1(21), XR2(21) , XR3(21),

e YH(Z20,20), YRR (20, 20),8(21,:21) . PRAN(4) ,

* CTRL (20}, ETTR(ZM) L TR1I(21), TRZ(Z21)»TRI(Z21) - TT1 (21, TT2(21),
* TT3(21),TRA4(21) . TTA4(21).T1(21,21) ., TTEMP (66} »

e B (20, 203, N2 (20, 20) , UL (20, 20) , U2 (20,20,

* FANG(Z21) »owt (21, 21) - T (21) . TT (21,21,

# Y3TX (20,20}, YIRX (20, 201, XBTX (20, 200 X1 X (20, 20) , X2X (20, 20) ,
* XAX (20,203, XDX (20,200 XIRX (20, 20) , u(21,21)

INTEGER TOTALS, ORIDER,READR, TECYL,.COUNT, nheat.mread
OFEN(4,.FILE="fluid.DAT?, STATUS="0LD?*)
OFEN(6.FILE="fluid.OUT?,STATUS=*NEW")
OFEN(7,FILE="WRPLOT.OUT?,STATUS="NEW?!)

[ e e b o E R T e e T T T
C INPUT DATA

WEITE (%, %} *NHEAT="
READ (%, *)NHEAT

WRITE (%, %} YALFA="?
READ (*, %} ALF

WRITE (4, %) YRO="
READ (4, %) RO
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c

cC
cc
cC

—_

/

G
o3
=9
=1-)

55

63
&b

140
142
141
143
144
300
997
cc
cc
cc
cc

—————— } ROH IS THE RELAAZATION FARAMETER FDR XSl

—————— } ROW IZ THE RELAXATION FPARAME

Zt

=

12

e
.
[y

3 k) = L)

H o= k= i T2
P
=
|
o

=4 it ke i

M ETLO)LE Y

X MMM A
4]

0,700

g
M
i
£

RCH=2ZC. 00O
ROW=10. 000
ORDER=1
READB=2

TCYL=200
NFR=1

IWORK=0

OFEN(UNIT=2.FILE="N,DAT* , TYPE=Tnew’)

WRITE{(B,#%) CP.RO,ALFHA-RAT M. TOTALS,; ORDER,PFSI M3 NF:READR: FWINT
*, TCYL; PTEMP, MT, NPR, PZ, ROW,PZZ . ROH, XZE. PRAN(1) - ROT1. FRAN(2) . ROTZ,
*PRAN{3) 2 ROT3, PRAN(4) s ROTE

FORMAT {//2¢132(1H*%) /Y /T&4.'CFP= "-,F11.0/T&4,R0= ",F11.2/T764,YALPH
*AYLF11.2/T04,"RATIO=",F11.2//T1&,'N =?,14,748,'TOTALS=":14,T80,'CR.Z
*DER =?,14,T11Z2.FFSI=7,F8.4/T1&,"M3=7,14,T48, 'NF =',14,TE0, TREAD
¥B=", 14, T112,'FH =*,FB.&/T16,"NT=*,14,T43,TCYL =*,-14.T11Z,'PTEMP
* =1,FB.&6/T14: "MT=7,14,T48,"NFR=?,I14/75.'FZ =7,F&,2, TS5, "ROW =7,Fé4. -
W2 /TEWVPZ2Z=Y L, F5.2,TOE,TROH =1,F&6.2/75, " XZB=",F&6.2, T30, "PR1=",F6. 3.7
*05, " ROTI=".F&6.2/T30,'PRE =1,F&6.3,T35,¥ROT =',F&6,.2/T30,FPR3=",Fb6.3,
# TS5, 'ROTS3="F6.2/T30,FPR3=1,F6.3, TS5, *ROTA=", F6.2//2(132Z{1H%*) /))

y of Jordan - Center of Thesis Deposit

nivers

FERMATE STATEMENTS

FORMAT (1X, TAWW="  FF,. 6, 2X: "AX=1 s FF. & ZX YW(2,1)=",0d20. 1G, 22X, ' XSI (1
*2NI)=1,420,10/)
FORMAT{SX,'LT=",14/}
FORMAT (10X, Yifail= ",1I3,%%X.'T. 0. . DUE TO SIGULARITY -1-1%)
FORMAT (10X, 'ifail= ',I3,5X.'T. 0. C. DU TO SIGULARITY -3-7)
FORMAT{1OX, Yi+ail= '»>I3,.5X:*T. 0. C. DUE TO SIGULARITY -2-1)
FORMAT{10X,*ifail= ', 13,5X,*T. 0. C. LDUE TO SIGULARITY —-4-')
FORMAT (10X, *ifail= ?,I13,5X-*'T. O. C. DUE TO SIGULARITY -5-7)
FORMAT(ZX.' TERMIMNATION OF CALCULATION IS DUE TGO STREAM FUNCTION
* FAILING 7O CONVERGE )
FORMAT (&dZ20.11/6d20.11/6d20.11/3620.117)
FORMAT (30X,YAXIAL VELOCITY?'///)
FORMAT (30X, 1STREAM FUNCTION?///)
FORMAT {30X.? VORTICITY Vil
FORMAT (20X, "MS=",14,5X, "AF=1.FF.4&/}
FORMAT(ADZC.11/4020.11/4020.11/4020.11/402G.11/71020.11)
FORMATI(//7/710X%X:'G R E A T -<{{ CONGRATULATIONS ¥ '//)

GRID FOINTS SPRCE ABSIGNFENTS
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nn
nn

oonan
10 nn

31

130
cc
cC
cc

[l
-
T
-
o 5

[}
-
.

m3 iz the numbsr of divisicns
r is the number af divisions
NN=N-1
N1 = NN/2 +1
M4 =M3~-1

LR=1.00G/M4
FIE=3.141S92653589800
DFMI=PIE/NN
FHI=1.0D0O/DFHI
FH=PHI/DFHI

DO 31 J=1,M3

R{J) =1.0D0—-(J-1}=%DR
DRa=1.0C0D0/DR

DRAZ = Z2.0DO0O*DRA&+DRA
DRH=DR/DFHI

R(MI) = 0.0DO
RDJ(M3}=0.0D0

0O 36 J=1.M4
RDI (I =R{I}*R (D)
RD({3) = ROJ(J}*GRA/Z.0D0O

OO0 S0 K=1.NN
TH)=—0,SRO*FIE+ (K—-1) *DPHI
R1I(IK)=RO+R{J)*DSIN(T{K) )
YH{JK)=1.000/R1 (3, K} /R1(J.K)
YHH{J,K)=1.0D0/R{J}/R1{J. K}
YRR(J,K)=DR#*R1{(J, K}
YRRR(J,K)=DR*YRR(J, K}
FC(K)=DSIN(T(K))/2.0DG/DOR
PCC(J.K)=R(J)*DCOS(T (K} }/2.CGDO/R1 (J.K)
FS(K}=DSIN(T(K)}/2.0D0/0FHI

PSS (J.K)=DSIN(T(KI) /2.0DO/R1(J,K)

T(1} = ~PIE/Z.0D0
T(Z1) = PIE/Z.0DO
FC(1) = 0.GBO
FPC(N) = 0.0D00
FS(N1)= 0Q.0DO

0o 150 J =1,M4
FCC(J. 1) =0.0D0
FSS(J.N1)=0.000

FREFPARATION FOR ITERATION

DO &6 J=1.M4
Z23(3) =-2.0D0*(2.0DO+RD{J}+DR*FH)

DO & K =1.NN
Z2(J3K)=(DRH Y A{FCC{J.K)+PHI)
Z4(3:Ki=(DRH Y»(~FCC{(J.K)+FHI}

21 (3. K}Y=RDJ(J)

the radius

S — — i emme o -
the circhmtere:

*{ 0,SDO/R(J)+DRA ~FSE(J,K))

ce
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. —-—— o e . - b e e e s ma L mmm e . TR
= L bWk FEALL A LR R TR o R G R WYY s B = N R LY N

IF{readBd.NE. 1) GO T3 2

n

g 4 J=1,M3
0D 4 K=1.N
c XS1(J,Ki=0.0D0
FSI(J.K1=0.0D0
4 W(J.K? = CP+*(1.GD0-RDJI(I) ) /R0/4.000

C WRITE(S,300) ((W(I,Kji . K=1.N),JI=1,M3)
G0 TQ S

2 Do A04,K=1,21
DO &04,.J=1,21
&04 read{d, xiwl{j k)sxsi{j-k}.psi(j.ki

c WRITE (%, ) COS{ALF}
CC NON-LINEAR COEFFICIENTS
S CONTIMNUE
cC
0o 13 J
ng 15 K

M
?

M4
NN

r R

cCc
ASI=YH{J KI % (1, —iFC(K) /COSDU(ALF % (FSI{J-1,K)-FBI{(J+1:K) )}
* +(PS{K)/COSDMALF) AR (J) 2 %
* (FSI{J.K+1)-FSI{(J,K—1})))

B=YHH {J.K) /COBO{ALF ) # {PSI1{J~1,.K)~FBI{J+1,K))}/2. /COSDI{ALF)
* /UR—Z2. 4DRPCIK) *¥YHH{ J. K) /COSD(ALF)

C=- (1, /COSO(ALF) AR} +2. 0%PSE (T, K+ (YHH(J.K) } /COSD{ALF} *
* (FSI(J.K+1)-PBI(IK~-1}) /2
* L O/TPHID

CC
A=0.0
X1(J.K}=DRA*(C/Z.000-DRA)
X2 I, W) =PHIA{ =B+ /2. ODD-FPHI/ROJ{3)}

X3R(J.K} = DRAZ

il

X3T{J.K) 2. 0DAXFH/RDOTI ()

Y3R(J:K) DRAZ

Y3T(J2K) 2. QUO*FH/RDI (J)

]

X4{(J K}=PHI%(B/2.0D0-FHI/RDJI{(J})
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I
w

Jo Ki=0ORA =T/ 2, 0LG-0RAD

XBhX(J K)—X3R(J=£)
X3ITX(THKI=X3T(J:K)
YIRX{(J,K)=YZR(J,K}
YITX(TK)=Y3T(J. K3
XAX(TKy=X4 (3.}
XX (J,K)1=KX5(TF,K)

13 CONTINUE

Do 107 J=1.M3
DO 107 K=1.N
W1{J,K)=0.0D0
W2(J.K)=0.0D0
X8I1(J,K)=0.0D0
107 XSI2(JF:K)=XSI(J:K)
€ B5858555555855585885555555555535555585855555555555555555555555555555
D0 320 K=1.N
320 XSIB((K)=XSI(1.K}
C S55585558555588555555555555585558585555585555555555555855555555585
cC

0O 1 LT= 1.NF
WRITE(B,9) LT

I1J=-1

o 129 J=1.7

I1J=1J+3

IK==2

00 129 K=1,7

IK=IK+3

TXSI(J.K)=DARES(XSI(13,1K))

129 TW(J-K>=DABS{W{IJ,IK))

cc
CC
ce

VR2Z ={X3R{N1,N1))=ROW

pg 17 I= 2.M4

VRI{I) = X1(I.N1)

VR2(I) =XSR{I.N1)+VR22

VR3(I+1) = X5{I.N1}

VRA(I)=(CP*COST (ALF) /ARLI(I N1 —{XZ2 (I, N1 *W (T, NI=1)+Xq3{I-N1)*W{IsN1

/ XIT(IHNL) )W (I, ND)+VRZ2%W (I NL) +UefF{j k)

17 CONTINUE

cc B.C. AT THE WALL

VRZ2(1) =1.0+VRZZ

VR3(Z) = 0.0

YR4(1) = G.0O

VRi(1) = Q.0
cC
cc BH.C. AT THE CENTER

VRZ(M3) = 1.0+VR2Z
VRI(M3) =-1.0
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cc

cc
C #Hiudh

cC

cc

)
un

cCC
cCC

CC
CC

cc

149

£c

18

cc
cC

URIIMIZT = O, 3334 W%, 7 W M3-2, M) )+ RZZMW TS, N
YRS (T =0, S (WML M1 —W (MT, 1) ) #VEITHW (M3 N1)
CALL Fo4ER

Fi2l,VRZ,VRIVRL VR4 IFAIL)
)

4
IFtifail.NE.Q) GO 7O ZZ

W{M3, N1 =VR4 (M3)

MU OSSR R S G GRS R SRR AR R R RS TR RRRESR
o T RN E TS SO EE S R R R R EEE E R SR R B LR S L e b S

virZ22={u3r{nl.nl) )} %row

GO 3 K=Z,MNN

0g 23 i=2.M4

VR1(IY = X1(I.K)
VRZ(I) =XTR(I.K)+VRZ2
VRI(I+1) = XS(I,K)

VR (1) = (CP+COSO{ALF) /RI{I K) —{A2{I K} *W{I ,K—1)+XF (1, KI*WIT,K+1) D)1

/ ASTUILK) Y #W LT K)+VR2Z2Z2#W (I, K}
B.C. AT THE WALL

VR1(i) = 0.000

VR3(Z) = 0,000

VRZ(1) = 1.0D0+VRZ2

VRA (1) = O,0D0
B.C. AT THE CENTER

VRZ(M3) = 1.0D0+VRIZ

VR1I (M3) = Q.QD0

VEAIM3E) = W{M3,M1)+VRZZ+W (M3 N1)

CALL FO3EAF (Z1.VRZ,VR3VRL. VR4, IFAILI]
IF{ifail.NE.OQ) GO 7O 57
0O 1689 I=Z.M3
Wi (I.K)=VR4{I)

CONTINUE
0O 117 J=2.M4

Wi{iJ. 1) {4, QD0WL{5,2)—W1(3,3)1/3.000
W1l{J.N) (4. OLO=WL (T NN) —W1{J,NN-1)) /3.000

nou

W1 (M3, 1) =kl (M35 N1)
Wl(MS:N)=W1(M31N1)

VTZ2={X3T (N1.N1}))+R0OW

ng z1 J=2.M4
0O 18 I= Z»NN

VTI(I) = X2{(J.1)
YTZ(I) =i3T{J,1)+VT22
VT3 (I+1) =X4{J,1)

VT4 (I)=(CFR*COSO(ALF) /R1{J- 1) = (XS(J- 1)W1 (J+1, 1) +X1{J» 1D 4W1{(J-1, 1))}~

/ (J- I *W1 (T, I +VTE2*WL (T, 1) +Uef+F(j k)
E.C. AT THE L.C.L.

VT1{1) = 0.000

YI3(Z) =-1.000

VTZ{1) = 1.000+VTZ2
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VT3 (1) =033+ (W15, 2 -WiiJ,3)i+vVT224W1 (3, 1)

LC
cC RP.C. AT THE R.C.L.
VTZ2(N) = 1.0DG+VTZ2
UT1 (N} =—1.0G00
VT4 (M) =0.33D0% (W1 CF, NN ~WT (I NN=1) ) +VT22%KW1 (T, N)
CcC
Call FO4EAF(21,VT2:VT3-YT1, VT4, IFAIL?
IF(ifail. . NE. O} G0 TGO &1
cc
EC
00 19 I=1.N
19 W203, 1=VT4(I)
c
21 CONTINUE
[
W2({M3. N1)= W2{M4,NI) + 1.000/3.0D0% (W2{M4,N1)-W2(M4-1,N1}}
c
DO 122 K =1.,N
122 W2(M3,K) = WZ{M3,.N1)
cC
cC
Y T3t A - e Y N S L 1 R A A S A A S S e ok
CC-wm ——— e e e e
Cc START COF X8I (i+l1/2) in vr-D
F——— e e e e e e e e e e e e e e e e e e e e e e o e et e e i e e
XRE2={(Y3IR{N1,N1}}»RCH
c

0g 103 K=2,NN

bg 1235 I=2.M4

DWI . KY=(W(I +KY+W1(I.K))*COSOD(ALF)Y**%Z2/R1{I,K)* (FC(K}*COSD(ALF) *#%2
2.0 (W{I-1.¥) .
+ W1(I-1,¥)
“WI+1,K)=WI1(I+1,K)}-FS(KI*COSD(ALF) **2/R{I) /2.0 (WL K+
+W1 (I, K+1)
~W(I.K—1)~W1(I,K=1}))

XRI(I)=X1X (I, K)

XR2(I)=Y3RX(I.K)+XR2Z

XRI(I+13=XSX(I K}

129 XRA(I)=(DWLI+K)— (XX (I K} *KSI (I . K-1)+XEX (I K} *XSI(I,K+1}))~-

¥ oW ¥ X X

/ (YITX (I K) I *XGI(I.K)+XRZ2%XSI(I,.K)
cc

XR1(1} = 0.0D0

XR2(1) = 1.0DO+XR22

XR3(2) = 0.0DO
XRE4{1Y=XSI(1.K)+XR22*XEI (1,K}
= IF (1t.NE.1) XR4({1)=XSI(1,K}*(1.0DO~XZIB}+XIB*XSIRB(K)
if(lt.ne.1) XRA(1I=XSI{(1:K}%uzhb+(1.0—x2b)} *XSIB(K)+XRZ2*X5I(1,K)
CCCCCCXR4(1)=XSI2(1.K)+XR22+X5I (1,K)CCCCCCCCCCOCCCCCCCCCCCCCCCceCcceccceee

XR1(M3) = Q.0DQ
XR2(M3) =1.0D0+XR2Z2
XR4 (M3} = 0.0DO
cc
CALL FO4EAF (21,XRZ:XR3, XR1.XR4,IFAIL)
IF(ifail.NE.O) G0 TO 5S4
cC

DQ 116 I=1.M4
116 X8I1{I.K)=XR4(I)

7
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[
GG 321 &=1i,N
321 X8IB(K3}=X5I11(1,¥)
C
e e e e +—
- — . . Y]
cC START OF XSI (i+l) in FHI-D @]

XTEE=(Y3TINI,NL) } 4R0H

0o 121 J=Z.M4
D0 128 I=Z.NN
DWET, T3 =(WZE(J» I} +W1{J- 1)) »COSDLALF) % 2Z/R1{J, 1) * (FC{I1)+COSD(ALFI %&2

!
f ThesisD

- Center 0

* 2. 0% (W2(J-1-1)

* +W1d{(J-1,

e I)-W2(J+1,13-W1(J+1.1))-FPS(I)+COESD(ALF) %*2/R (1) /2, Q0% (W2(J, 1
* +iWl (J,I+1

M

W23, I-1)-W1{J.I-1)))
XTI(I1)=X2X{3. 1)
XT2(1)=Y3TX (J-> 1} +XT22
XT3{I+1)=X4X (3, I)
128 XT4{I)=(DW{J, D)~ {X0X (T, I)%XSI1(J+1- I} +X1X{J,1)*XSI1(J~-1,1)))—
L2 (YIRX{J- I ) #XSIi (J. 1) +XT22%X8I1(3, 1)

cec
CC B.C. AT THE C.L.
ce
XTi(1) = 0.0D0
XT3 (Z) = Q,000
XT2(1) = 1.0D0+XT22
XT4(1) = Q.000
cc
cCC B.C. AT THE C.L.
XT2(N) = 1.000+X722
XTL(N) = O,000
XT4(N)Y = 0,000
Cc
CALL FO4EARFL{Z21,XTZ:XT3:XT1,X7T4, IFAIL)
IF{ifail.NE.O) BO 70 5B
cC

GO 119 I=2Z.NN
119 X5I2(3, I)=XT4(I)

All Rights Reserved - Library of University of Jordan

c
c
121 CONTINUE
c UP-DATING FSI
CcC
0o 2& MS=1.TOTALS
CC
I1J=-1
c
no 29 J=1.6
I13=I1J+3
IK=-1
c

DO 29 K=1:6
IK=IK+3



2% TPSI {5 Ei=0ABSIFEI{I I IR}
CC
0o 8 J=Z+M3%
DG 8 K=Z,NN
XSR=DR
8 PSI(J M) =(X3R~Z1{(JKIwFSI (J-1,K)~Z2(J, ) *PSI1(J,K—-1)}-Z4 (T, K)*xFSI (],
#*l+1 =22 KiwmrPSI{J+L K ) /I3 (T)nRPI+{1.000G~FZY*FSI{J. )
CC
AF=0, GO0
IJ=-1
0o 11 J=1,.4
I15=I.J+3
IK=-1
no 11 K=1,4
IK=IK+3
BPSI(J.K) =DABS(FSI(IJ,IK))
c IF(BFSI(J.K) .LT. 1oG.0D00y GO TO 11

APSI=DABS ((BFSI (J.K)-TFSI(J,K)} /BFSI(3,K))
IF(AFSI.LE.AF)Y GO TO 11
AP=AFSI
IF (AP.GT.1.AND.MS.GT.TOTALS)Y GO 7O &35
11 CONTINUE

IF(AF JLT.FFPS5I) 50 TO 733

26 CONTINUE
s

733 50 TO (744.745:747),CRIER

744 DO 734 K=2,NN

734 XSI2(1,K)=((4.CD0%FS5T (2,K)—0.8S00xFST (3-.K)) / {DR) %+2) #XZIB+
* (1.0DO=-XZB) *«XBIZ2(1.Ki
50 TO 738
pO 735 K=2.NN
XSIZ2 (1, Ki=(2.0DO*FSI (2, K) / (DRI %2 *XZB+ (1. 0-XZB) *XBIZ (1, K)
G0 TO 738
747 DO 737 K=2,NN
737 XBI2(1.K) =({(&.0GDO0*FSI{Z,K)-1.80xPSI (3, K)+2.0/9.04PSI(4,K})/

s (DR #*2) #X7ZB+ (1. 0-XZB) *X8I2(1,K}

738 CONTINUE

]~

(AR E)

4
3

cc
cC NOMN-LINEAR COEFFICIENTS
cc

0o 16 J=2.M4

DO 1& K=2.MN

ASI=YH(J.K)# (1. ~{(FC(K)/COSD(ALF) # (FSI (J~1,K)—-PSI{J+1,K})))
# +(FPS{K) /CDSL(ALF) /R{J) )
* {(PSI(J-K+1)-PSI(J-K-1)))

B=YHH {J. K} /CCSD (ALF ) * (FEI {J-1.K)~FSI (3+1,K} ) /2. /COS0(ALF)
e /OR-Z. *DR¥FC (K) #YHH{J. K} /COSDLALF)
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C==(1./7C050 (A7)
:k (FEI(J.K+13-F3
o LGAOPHD)

A=YHOI KDY # (1. +F0 (K ACOSRALF ) # (FSI{J-1,K)-FSI{(J+1:K)}

* ~PS K /COS0 (ALF
*  JaK+1)-F3I(J:4-

CC
X14(3:K}=DRA4 (/2. 0D0-DRA/COSD(ALF))
A2(3,K)=FHI % (-B*+COGD{ALF} /2. 000-PHI/RDI(J) /COSDALF )
ASR{J.K) = A+COSD(ALF; /2.000 +DRAZ/COSD(ALR)

X3T(J-K) = A+COSD{ALF) 7Z.0D0 +2.CBO%PH/RDJI{J} /COSD{ALF)

Y3R(J.K) = ASI#COSD(ALF: /Z.0D0 +DRAZ/COSD(ALF)

]

¥37T{J.Ki = AT+

X80T, K)=PHI& (B+CCESD(ALF) /2. ODO-FHI/RDJI(]} /COS0(A

-

XS(T-KI=DRA*{-C/Z, GLO-TRA/TCOSD(ALFY)

X1X(3.Ki=X1{J.K}/COSD(ALF)
X2X (3, K3=X2(J, K} /COSD(ALF)
X3RX (I K)=X3IR(J.K) /COSD(ALF)
X3TL{J.KI=X3T{(J, X} /COSD(ELF)
YIRX (J.K¥=YZIR{J.K) /COSD{(ALP)
Y3TX(J.Ky=Y3T(3,K) /EOSD(ALF)
X4X(J:K)=X4(J,K) /COGSD(ALF)
XSX(J+K)=X5(J.K) /CGSD{ALF)

14 CONTINUE

(=
WRITE(8.,144) MS,AF

C HHEHHHHHHHEHHEHR A HE AR AR ST S B H 4R HA S S SR H S R S HN S SR S S g EEs

ec
cC
DO 131 J=1.M3
D0 131 K=1.,N
Wi, K)= W2{(J.K)
131 XSI{(J.K) = XSIZ(J.K7

c
AX=0.0D0
AWK=C. Q00
I1J=-1
(=
DO 111 J=1.7
I1J=1J+3
IK=-2
c

Do 111 K=1,7

I} 2 PSS (I, K)+ IYHH (I, K ) 3 /COST(ALF) %

OSD(ALF) /2. 000 +2.0D0*PH/ROS{(J) /CUSD{ALF)
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K=K +3
BW (I, K} =0ABS{W{IJ, 1K}
AW=0ABS ((BW(J, ) ~TH (T, K} ) /BW (T, K}
IF(AWLLE. R R0 T0 101
AlW=AW
101 BXSI(J,K) =DABS(XSI(IJ.IK}}

IF{(BXSI{(J.K} .LT. t.0D0)y 0 70O 111 "5.;

AXSI=DARS((BYCI(J,KI}-TXSI(J.K))}/BXSI{(J,KJ}) o

IF(AXSI.LE.AX) 230 70 111 8.

AX=AXSI e

111 CONTINUE Iy
c .

WRITE(B,7) AWW,AX-W{2,1) - A8T(1,N1) 8

IF{AWW .LT. PW. aND .MS. LE .9 30 TO 998 e

1 CONTINUE =

[T

do 814 j1=2.20 ©

do 816 k1=2,20 Fob)

= writei(77.%) U{jl.k1l) "%'

@)

C , 1

993 WRITE(8,9%7) S

L mmsScooooSsSo=osm==s Pf'\int flow field on flulid.dat ==s==s==s======= o

| —

do 3807,k=1,21 'g

do BO7.,j=1,21 "'5

807 writelo, #dwij ki1, %ssi{j k)T 7.psi{j.K] .

.-l—'

C===================:======:=============—"====’-======E============ %

Cokkoddolokue kdRn ki Rs  proapars axial velocity for plotting ##sFwdksds é

(o oh s s s s s ke e e ke e ke ok e s o sk s o e e 0 30 s ke S0 o 5 o sk o o o o o ol i b el o R o o o o o SR S ot bl sk s e o e o ok o o o D)

©

c at HC-L ( LEFT ) ~

DELL=1.000/20 §

WRITE(T» %) 24MA+1 Q

Do S51,J=1,20 —

=51 WRITE(7, %)= (1.0-(J-1)*DELr).?*, 7, H{J, 1} 1

>

c AT THE CENTER FOINT %

WRITE(Z:4) 027, 7, W{21:1) %

i}

c AT R C-L (RIGHT) E%

00 552, J=20, 1, ~1 nd

5392 WRITE(7,%)1.0—-{(J=1)%0ELr,",?,W(J,21) o

<

CC ook domlokaondond CALCULATION OF REYNOLD AND DEANS NUMEBERS okskok ok k
D0 109 K=1,21
Fa=0,0
F2=0.0
00 209 J=2,20,2



Fhap s WK AR
R

L]
/
(J+13

206 F2=F2 + W(J+1,.K1#®
109 RIVH = DR&(I.O=F3 + Z.0%F2 /3.0
Fa =3.0
FE =G0
00 319 K=2,2G0,2
319 Fa = Fq +RI (K
Do i39 K=3,19.2
139 FZ = F2 +RI(K)
cc
RE = 4.0%DPHI®(RI(1)+4.0%Fa+2 OxF2+RI(M3)) /(3. 0*FIE)
CC
DE = RE*CGSD(ALF) /JDSRRT (RO)
C —————————————————————— — —— ——— ———————— -
c _ . - - e - _—
write(7,%)'0E=",DE,' RE=7,RE
e _ — [ -
GO TO 999
52 WRITE(B.53) ifail
GO TO %99
54 WRITE(B.S3) ifail
GO TO 999
57 WRITE(8,5&) ifail
G0 TQ 999
58 WRITE(8,59) ifail
GO TO 999
61 WRITE(8,.63) ifail
(50 7O %99
&5 WRITE (520d)

=0

TO 595

F79 CONTINUE
CC koo paokskddonw CALCULATION OF REYNCLD AND DEANS NUMBERS sk bk i

Lo

Fa=

10 K=1,21
Q.0

Fe=0,0

g

Fa=

e
=

20 JI=2Z.2Z0.2
Fa& + W(T,K)®R{J)
F2 + W(J+1,K)#»R{J+1]

RI{K)= DR#{4.0«F3 + 2,0*F2) /3.0

Fa
Fz2
Do
Fa
0o
Fz

RE

LE

=0.0
=0.0

311 K=2,20,2
= F4 +RI (K)
113 K=3,19.2
= F2Z +RI(K}

A4, GeOPHI#(RI (1) +4, 0%F43+2, 0xF2+RI (M3)) /(5. 0%PIE)

FE*COSD{ALF) /OSERY (RO)

WRITE(8,30) RE,DE -

FORMAT {(/ /20X, YREYNCOLD NO. IS =',F2.2,ZX,’DEANG NO. I5=',F%2,2//)

STOR
END
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HEAT TRANSFER CALCULATION PROGRAM

DOUBLE FRECISION WO(21,21),W(21,21),PSI0(21,21),TT (21,21},
PSI(21121),XI(21,21),X10(21v21)'BCDNI{21)1Tmr(21),ﬁNU(1,21)
2 ,A1(21)v81(21),C1(21),D1(21)1RERT(21121),T0(21121)1T(21v21)
2 LJEANG (21) . ANUT (21, 21) . TOO (21 ,21)

[
-

OFEN(14,FILE=*TEMF.DAT?,STATUS="0LD")
OFEN(4,FILE='f1luid.DAT*,S5TATUS="0LD")

OFEN(1&.FILE="TEMP.OUT?, STATUS="NEW’)
OFEN(17,FILE="'TPLOT.OUT?,STATUS="NEW?)
OPEN(19,FILE="NUFLOT.0UT? STATUS="NEW"}

c
C NN @ no. of grids in the radial direction
C MM : no. of grids in the FPHI - direction
C
C
C
C e e e ke e { Convergence Farameters }
()
ALDTe=30.0
ALDT=30.0
MM=20
NN=Z0
DELr=1.0/NN
DELph=3. 141592654 /MM
C ___________________________________________________________
c INITIAL FEILD
[: __________________________________________________________
print#, TREE="
Read*.REE
C Ro is the curvature ratio.
c W, FSI, XI are the axial velocity. stream function and vortisity.
|:======"-=
print*, 'Ro="
Fead#*.Ro
Cﬁ::::::
prifntk, 'Pr="1
Read#*.pr
Cc=======
00 707,K=1,HMr+1
DO 7046, J=1.NN+1
READ (4, %)W {(J. K} XI(J,K)FEI(J: K}
C READ (4. %) Wm
704 CONT INUE
707 CONTINUE
TRUN=2

IF(IRUN.ER.2) THEN
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&04

5 e she e ke

00 702, J=1,NN+1
READ (14, %) TO(J,K)
CONT INUE

ELSE

00 &04,K=1,MM+1

DO &G4, J=1,NN+1
r=1.000-(J-1;*0ELr
TO(J K)=1.000

CONT INUE

ENDIF

{ Flow Considerations ¥

I1JX=1

DO 1000, J=1,nNN+1
0O 1000, K=1,MM+1
TOOA(IKY=T (I, K)

START OF T ( i+1i/2 ) AT THE VERTICAL CENTER - LINE

K=MM/2+1

PHI=0.0D0

DO 1,J3=2,NN
F=1.0D0- (J-3) »DELr
RR=Ro

1.0/r=FPr/r/(PSI{(J.K+1)-FEI1({J:K-1))/2,0/DELph
Fr/r/{FB8I{J-1,K)-FBI{J+1:K)}/Z.0/0ELr

T=—W (T, K) #TO(j » k) /TO (NN+1,MM/2+1)
X1T=AT/2.0/DELr+1.0/DELr%*2
X2T=1.0/r#%2/DELphi#2-BT/2.0/DELRh
XAT=BT/ (2. 04DELFR) +1.0/ (r*DELph) %2
XS5T=1.0Q/DELr*=2-AT/2.Q/0ELr
Xev1T==2_0/DEL %2

X 2T==2. 0/ re*2 /DELph#2

Xt 1T=—2. O/ w2/ DELph %2

Xt 2T==2. 0/ DELr+*2

C1()=X3T
AL (D) =XI1T
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(3]

1iJi=XriT

1]

i3
ONT INUE

[gp Jw}

0o 2, J=2,NN

BCON=B1 {(NN/Z+1}

by ——— . ~

(J.LT.10) ALOTC=ALIDTC#1.00

-
m

Bl (J)=B1(J)+BCON+ALDTC
D1(J}=D1 {3} +BCON+ALDTc*TO(J. K}
CONTINUE

B C AT THE WALL
A1 (1) =0,000
Bi{1)=1.000
C1{1)y=0.0D0
01 (1)=0.0D0

B C AT THE TENTER

AL (NN+1)=-1.000

Bl (NN+1}=1.0D0O

C1 (NN+13=0,06D00

Di (MN+1)=0.3D0# (TOMN, K)—TO(NN+1,K) )

CALL OGETSL(NN+1.A1,51.C1.01. IFAIL]

TOINN+1,KI=D1 {NN+1)

N =nT—XCT#*T000, =1 —XrZT4T0{J, K)~X4T#TO{J,K+1}

START OF T ( i+1/2 } IN THE RADIAL DIRECTION

o 4.K=2.MM
PHI=-3.141572654/2.0+{K—-1}+DELph
00 5.J=2.NN

r=1.000-(J-1)*DELr

RR=Ro

AT=1.0/r—FPr/r/(FSI{J,K+1)-PSI{(J.K-1)}/2.0/DELph

BT=Pr/r/(FSI{J-1,.K)-FSI{J+1,K))/2.0/DELr

AT=—lW(J K} *TO(j  KY/TO(NN+L, MM/ 2+1)
X1T=AT/2.0/DELr+1.6/DELr+*2
X2T=1.0/r++2/DELph**2-BT/2.0/DELph
X4T=ET/(E.O*UELPh)+1.D/(PfDELPh}*#2

XST=1.0/DELr #%2-AT/2.0/DELr
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o

Xr-1T==~2. Q/D0EL %42

o]

- l-. - 1] .‘A-.' -y ] l.‘Fl
LN R P R TN - Yo 2

-t P

X
A

e 17==2,0/rwsZ/DElLphw=2

K¢ ETmmZ, O/ DELF R4 2
AL =X1T

B1(J) =Xr1T

C1(3)=x5T

D13 =ET—XZTATO{T, K=1) —Xr2T4T0 (I, K) =XaTwTO (J,K+1)
CONT INUE

DO &, J=2,NN

BCON=B1 (NN/Z+1)
IF(J.LT.13) ALDT=ALLOT+1.00
B1(J)=B1(J)+BCOMN+~LDT

D1 (J)=Di(3)+BCON*ARLDT*TG (T, K
CONTINUE

-B C AT THE WALL

Al {1)=0.000
Bl {1)=1.aD0
Ci(1)=0.000
D1 (1) =0. 0500

B C AT THE CENTER

Al (NN+1)=0.000

Bl (NN+1)=1.0D0
C1{NN+1}=0.0D0

D1 (NN+1)=TO (NN+1.MM/Z+1)

CALL LRTSL(NN+1.A/1,B1-Cl1.01,IFAIL)
DO 7,J=1.NN+1

T{(J,K}=D1(3
CONTINUE

UP DATING T IN EVERY r DIRECTION ————————

TO(IKI=T{J.¥K)

CONTINUE

AT THE HORIZONTAL CENTER — LINE {( LHSE )} AND { RHS )
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l

nono

—— -
1., :

GO 53. =2 NN

T, 1 =08,0004710, 23 =113, 3) 1 /3.0D0
TLI-MM+1) =3, S00G4T (T M) =T (F,MM—1) 5 /3. 000
TANN+1, LI =T INN+L T A Z+1)

TENN+1, MM+1) =T R+, MM/ Z+1)

CONT IMUE

BOX A WHICH

0

[ ol mton}
Sun

DO 1904,K=2,M1
DO 104, J=1,NN+1
TOLTK)=T{3.K)
CONTINUE

o e e e o

DO 1&,J=2. NN

DO 14,K=2:MM

r=1.0D0-(J-1) =DELr
FHI=-3.141592554/72.0+(K-1) «CELph

AT=1.0/r—Pr/tv/ (PSI (I K+1)-FEI{J:K=-1)) /2. Q/DELPH
BT=Pr/r/{PFS1{(J~1.K)-F5I{J+1,K)) /2. 0/0ELr

AT=—W{J,¥K)*TO(j &) /TONN+1,MM/2+1)
X1T=AT/2.0/DELr+1.0/DELr %2
X2T=1.0/r%%2/DELph+*2=~BT/Z.0Q/0ELph
XE3T=BT/{2.0%DELFph} +1.0/ {r*DELph) #%2
XST=1.0/DELr#*2-AT/2.0/DELr
Xrl1T=—2.0/DELr**2

X Z2T==2,. 0/ /r»w2/DEL phis2
XE1T==2.0/r%*2/DELph**2

Xt 2T=-2.0/DELr+»2

AL (K)=X2T e

Cil{K)=X4T
BI(K)=Xt1T
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14

18

(|

19

DRI =ST-41T#70{J-1, K ~AtaT*TO (S, K} =RXOT*TO(J+1.K

CONTINLE

OO 1G+K=2, 1

IF(J.LT. 10} ALOT=ALDT*1.G0

B1 (K}=B1(K)+ECON#ALDT
D1 (K)=D1 (K)+BCON*ALOT*TO{J.K)
CONT INUE

B C AT THE WALL

Al (1)=0.0D0

B1(1)=1.0D0

Cl(1)=-1.0D0
DL(1)=1.GCD0/3.000#(TO(J.2Y-TO (T, 3})

B C AT THE CENTER

Al (MM+1)=-1.0D0C

Bl (MM+1) =1, Q00

C1 (MM+1)=0.000

D1 (MM+1)=1.000/3.0R0*{FO(I,MM) -TO{J>MM-1))

CALL DETSL(MM+1.A1.B1.C1.D1,IFAIL)
DO 19, K=1,MM+1

T(IK)=D1{K)
CONTINUE

————— UP DATING T IN EVERY PHI DIRECTION ————————-—

00 347,K=1,MM+1
TO(I,KI=T(I. K)
CONT INUE

CONT INUE

04

WRITE(17,%)ijk

DO 20&6.K=2,.MM

OO 0&. J=2.NN
RERT(J.K)=ABS{(T(J.K)-TOO(I K} }/T(J,K)}
WRITE(17, %) RERT(J:K)

CONTINUE

erman=0Q, 0
DG 103 J=2.20
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DO 103 K=2,20

[F{Rart (yk). It Epna) g0 to 103
Erman=FerT {j k}

103 Continue

c write{l7,%) "Ermax=",Ermax
if(Erman.lt.1.0e-3) go to BSR

IF{RERT{Z: 27 L7 14 GE-S. AND. RERT (52 5. LT 1. GE~-4. ANDO.
% RERT(15,15).LT.1.0E-6.AND.RERT(1G,18).L7. 1.0E-6.8ND.
& RERT{10, 10} .LT.1.,0E-6.ANI.RERT(7.3).LT7.1.0E~4) THEN
=070 888

ELSE
BOX A WHICH STORS THE NEW SOLUTION IN THE CLD STCORS

i

ook ok R R SR R SR e R R R R SRR AR R R R R R R R SRR R R AR R R R R K R R

[

DO 107,J=2:NN
DO 106,K=1.MM+1
TOKIK)=T(J- K}
106 CONTINUE
107 CONT INUE

997 CONT INUE
IJK=1Jk+1
IF{IJK.GT.500) B0TO 888
5070 999
ENDIF

G LR RE RS EEEEREEEELEEEEEEEEELESEEESEEEERREESEER SRR LR EEREE S EE ]

ce WRITE(%, %) ijk
83 WRITE(17.%}RELATIVE ERROR IN TEMF.?
8 OO 807,K=1,MM+1
DO B0&,J=1,hNN+1
WRITE(1&6,%)TO(J.K)
c WRITE{(17,*)RERT(J:X)}

BO& CONTINUE
WRITE(1&6.%)? i
= WRITE(173%)? ’
807 CONTINUE
c WRITE(17.%) 7 *

=
cc
EC
CC  eorwokdobdodore CALCULATION OF THE BULK TEMFRATURE ook ok ook o kok
cC

ce
cc

00 9561 J= 1,21
ccee r=1.0—-(j —1) *DELr

gUMl = 0.0
0 &2 I=2,206,2
r=1.0-(I-1)*DELr
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Y

SIHMD = BUML F30O0sWGII. T RTID, ) s
62z CONT THUE
SUMZ = G.0

Do 402 I= 3,1%.2

r=1.0-{I-1)*0ELr

SUMZ = SUMZ + 2.0xW (I, I)*T (I, J)%r
03 CONT INU=
i FANG(J) = (LELr/3.0)+% (SUMI+SUMZ)

3 §)
1 i

i

SUM1 = G, 0
bag 403 J=2,20.2
SiM1 = SUML + 3.0 # FANG(J)
404 CONT INUE
SUM2 = 6.0

DO 4035 J=3.19-2
405 SUMZ = SUMZ + 2.0 * FANG(J)
cc '
Th=(2.0/(REE*3.141572654)) * (DELph/3.0) % (FANG(1) + SUMLI+SUM2+
2 Fan
* G(Z21))
WRITE(17-%) 7 Fr=T,Fir,"’ ERmau="ermax
WRITE(17.%) *Ro=',Ro:' Re=',REE
e ——————————— — OT calculation —-————

Tiax=(.0
do 102 j=1.21
do 102 k=1,21
iflt (k). 1t.Tmax) go to 10Z
Timax=T{j .k}

102 gontinues
wWhite(l7.%}'DT=7,Tnax/ 10,0
WRITE(1LV %) *ISK=?,1JK

cc CALCULATING LOCAL NU

DO 905, K=1.MM+1
ANUL ) ==2.0/Tmw (2, 0%T (1, k) =4, 0%T(2, ) +T(3,K)) /2. 0/DELr
QS CONTINUE

T e
(N CALCULATING AVERAGE hNU AT THE WALL
SUM=0.0
DO 903,K=2,MM
SUM=SUM+ANU {1, K)
F03 CONTINUE

AMNU=DELph/ (2. 0%3, 1415924654) * {ANU (1, 1} +ANU (1, MM+1) +2, Q#SUM)
WRITE{17.,%)*AMRNU=Y > AMNU

WRITE(19,#)MM+1
DO 5525, K=1,MM+1
PHI=(-3. 141592454/2. 0+ (K-1)*IELph) »180.0/3. 1415925654
WRITE(1F,#)PHI.?»*,ANU(L.K)
555 CONTINUE

c AT THE HORIZONTAL CENTER - LINE ( LK)
WRITE(17,%) Z*NN+1
DO S51,J=1,NN
WRITE(17.,#)—(1.0D0—{J~1)*DELr) %%, T(J: 1)
S5l CONTINUE
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WRITE (1o *}
AT THE HOR
WRITE (17 %)

1 Y

ZONTaL CENTER -~ LIME ( RHS )
Ga 7P TANN+L, 1)

Do =32,J=MN,1.-1

WRITE(17, %)
CONTINUE

CaAL.L CFLOT
stop
end

1.0D0—(J-1)1#DELr, 5 * s T (3. MM+1)

{ T.FERAD.RO., DE. RE-7r, IWORK,.NFLOT)
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